128 research outputs found

    Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system

    Get PDF
    Remotely sensed hyperspectral image classification is a very challenging task due to the spatial correlation of the spectral signature and the high cost of true sample labeling. In light of this, the collective inference paradigm allows us to manage the spatial correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously. The transductive inference paradigm allows us to reduce the inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and unlabeled information. In this paper, both these paradigms contribute to the definition of a spectral-relational classification methodology for imagery data. We propose a novel algorithm to assign a class to each pixel of a sparsely labeled hyperspectral image. It integrates the spectral information and the spatial correlation through an ensemble system. For every pixel of a hyperspectral image, spatial neighborhoods are constructed and used to build application-specific relational features. Classification is performed with an ensemble comprising a classifier learned by considering the available spectral information (associated with the pixel) and the classifiers learned by considering the extracted spatio-relational information (associated with the spatial neighborhoods). The more reliable labels predicted by the ensemble are fed back to the labeled part of the image. Experimental results highlight the importance of the spectral-relational strategy for the accurate transductive classification of hyperspectral images and they validate the proposed algorithm

    A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data

    Get PDF
    The automatic classification of hyperspectral data is made complex by several factors, such as the high cost of true sample labeling coupled with the high number of spectral bands, as well as the spatial correlation of the spectral signature. In this paper, a transductive collective classifier is proposed for dealing with all these factors in hyperspectral image classification. The transductive inference paradigm allows us to reduce the inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and unlabeled information. The collective inference paradigm allows us to manage the spatial correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously. In particular, the innovative contribution of this study includes: (1) the design of an application-specific co-training schema to use both spectral information and spatial information, iteratively extracted at the object (set of pixels) level via collective inference; (2) the formulation of a spatial-aware example selection schema that accounts for the spatial correlation of predicted labels to augment training sets during iterative learning and (3) the investigation of a diversity class criterion that allows us to speed-up co-training classification. Experimental results validate the accuracy and efficiency of the proposed spectral-spatial, collective, co-training strategy

    ORANGE: Outcome-Oriented Predictive Process Monitoring Based on Image Encoding and CNNs

    Get PDF
    The outcome-oriented predictive process monitoring is a family of predictive process mining techniques that have witnessed rapid development and increasing adoption in the past few years. Boosted by the recent successful applications of deep learning in predictive process mining, we propose ORANGE, a novel deep learning method for learning outcome-oriented predictive process models. The main innovation of this study is that we adopt an imagery representation of the ongoing traces, which delineates potential data patterns that arise at neighbour pixels. Leveraging a collection of images representing ongoing traces, we train a Convolutional Neural Network (CNN) to predict the outcome of an ongoing trace. The empirical study shows the feasibility of the proposed method by investigating its accuracy on different benchmark outcome prediction problems in comparison to state-of-art competitor methods. In addition, we show how ORANGE can be integrated as an Intelligent Assistant into a CVM realized by MTM Project srl company to support sales agents in their negotiations. This case study shows that ORANGE can be effectively used to smartly monitor the outcome of ongoing negotiations by early highlighting negotiations that are candidate to be completed successfully

    A Multi-Stage Machine Learning Approach to Predict Dengue Incidence: A Case Study in Mexico

    Get PDF
    © 2013 IEEE. The mosquito-borne dengue fever is a major public health problem in tropical countries, where it is strongly conditioned by climate factors such as temperature. In this paper, we formulate a holistic machine learning strategy to analyze the temporal dynamics of temperature and dengue data and use this knowledge to produce accurate predictions of dengue, based on temperature on an annual scale. The temporal dynamics are extracted from historical data by utilizing a novel multi-stage combination of auto-encoding, window-based data representation and trend-based temporal clustering. The prediction is performed with a trend association-based nearest neighbour predictor. The effectiveness of the proposed strategy is evaluated in a case study that comprises the number of dengue and dengue hemorrhagic fever cases collected over the period 1985-2010 in 32 federal states of Mexico. The empirical study proves the viability of the proposed strategy and confirms that it outperforms various state-of-the-art competitor methods formulated both in regression and in time series forecasting analysis

    INSOMNIA:Towards Concept-Drift Robustness in Network Intrusion Detection

    Get PDF
    Despite decades of research in network traffic analysis and incredible advances in artificial intelligence, network intrusion detection systems based on machine learning (ML) have yet to prove their worth. One core obstacle is the existence of concept drift, an issue for all adversary-facing security systems. Additionally, specific challenges set intrusion detection apart from other ML-based security tasks, such as malware detection. In this work, we offer a new perspective on these challenges. We propose INSOMNIA, a semi-supervised intrusion detector which continuously updates the underlying ML model as network traffic characteristics are affected by concept drift. We use active learning to reduce latency in the model updates, label estimation to reduce labeling overhead, and apply explainable AI to better interpret how the model reacts to the shifting distribution. To evaluate INSOMNIA, we extend TESSERACT - a framework originally proposed for performing sound time-aware evaluations of ML-based malware detectors - to the network intrusion domain. Our evaluation shows that accounting for drifting scenarios is vital for effective intrusion detection systems

    Mining complex patterns

    Full text link
    corecore